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ABSTRACT 

It is important to resolve the issue of whether extra infonnation can help assign the probability for failure of a 
pilot or Naval Flight Officer (NFO) in some phase of flight training. This assigned probability for failure could be 
based simply on empirical data gathered over some relatively long period of time. However, if scores from selection 
tests, personality tests, vision exams, psychomotor tests, and the like could serve as cogent infonnation about the 
probability for failure, then the probability for failure could be revised upwards or downwards based on an 
individual's standing on these variables. In·addition, it would be interesting to find out if candidates could "trade 
off" high scores on one class of tests for low scores on a different class of tests, but still achieve the same level of 
perronnance. Here, level of peIfonnance is defined as the probability for failure. This brings us into contact with 
the idea of isoperfonnance. In this analysis, we examine two classes of predictor variables where candidates might 
trade off high scores for low scores, yet still achieve the same level of performance. The ftrst class consists of 
cognitive infonnation processing variables. Scores for the ftnal academic grade from Aviation Pre-Flight 
Jndoctrination (API) will serve as an example of this class. The second class consists of personality variables. We 
will use scores from the Pilot Biographical Inventory (PBI), a subcomponent of the Aviation Selection Test Battery, 
as a surrogate for scores on personality tests to be administered in future research on isoperrormance. 
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INTRODUCTION 

It is important to resolve the issue of whether extra information can help assign the probability for failure of a 
pilot or Naval Flight Officer (NFO) in some phase of flight training. The probability for failure could be based 
simply on empirical data gathered over some relatively long period of time. For example, such records indicate that 
about 25% of pilot trainees will fail to meet the required standards for success in Primaty, Intermediate, or 
Advanced flight training after completing Aviation Pre-Flight Indoctrination (API). However, if scores from 
selection tests, personality tests, vision exams, psychomotor tests, and the like could serve as cogent information 
about the probability for failure, then numbers like the 25% predicted failures could be revised upwards or 
downwards based on an individual's test scores. Improved decisions about the career path for individuals could 
then be made on the basis of this extra information. 

In addition, it would be interesting to fmd out if candidates could "trade off" high ·scores on one class of tests 
for low scores on a different class of tests, yet still achieve the same level of performance. Here level of 
performance is defined as the probability for failure. This brings us into contact with the idea of isoperformance. 
An article in the journal Human Factors by Jones and Kennedy (1) prompted our current interest in applying 
isoperformance to the analysis of selection and training data. 

In this analysis, we examine two classes of predictor variables where candidates might trade off high scores for 
low scores, yet still· achieve the same level of performance. The first class consists of cognitive information 
processing variables. Scores on the final academic grade from API will serve as an example of this class. The 
second class consists of personality variables. We will use scores from the Pilot Biographical Inventory (FBI), a 
subcomponent of the Aviation Selection Test Battery (ASTB), as a surrogate for scores on personality tests to be 
administered in future research on isoperformance. 

As part of another project called the Pilot Prediction System (PPS), we have constructed a rather large and 
comprehensive data base conSisting of various selection and training variables. A subset of this data base contains 
information on N = 1,120 Navy and Marine Corps candidates who entered pilot flight training from 1993 to the 
beginning of 1998. Crucial to the present analysis, this data base tells us if a student pilot failed some phase of 
flight training and, if so, which particular phase. 

A previous paper (2) presented the quantitative rationale for the analysis carried out in this report. An 
information theoretic formula was derived based on Bayesian model evaluation to compute whether a tentative 
model could be accepted or rejected. The model assigned values to n cells of a contingency table. These values, 
labeled as Qi, were the theoretical probabilities that a subject would fall into one of the n cells. 

THE DATA BASE 

The data analyzed in this report consist of a subset of the overall PPS data base. We selected 1,120 Navy and 
Marine Corps pilot candidates who were in training during the period from 1993 through January 1998. Scores on 
the various subtests of the ASTB and all the grades from the academic ground school (API) portion of training 
prior to actual flight training are part of this data base. We will concentrate on one of the sub tests from the ASTB, 
the Pilot Biographical Inventory (PB I) , and the final overall grade from API called the Navy Standard Score (NSS). 

The raw score on the PBI is transformed into one of seven discrete categories so that PBI = 3, 4 ... 9 with 3 
being the lowest score and 9 the highest score. The API NSS is tranformed into one of six discrete categories, 
API = 1, 2 ... 6 with, again, 1 representing low scores and 6 representing high scores from ground school. Thus, 
API represents one predictor variable from the class of cognitive information processing variables, and PBI 
represents one predictor variable from the class of personality variables. Table 1 shows the breakdown of the raw 
scores on the PBI and API variables into their respective discrete categories. 

One criterion variable will be used in the subsequent analysis. This criterion variable simply records whether a 
candidate failed some later phase of flight training after API. This includes Primary, Intermediate, and Advanced 
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Table 1: PBI and API Raw Scores Broken Down Into their Respective Discrete Categories. 

PBI Raw Score PBI Category API Raw Score API Category 

39-43 3 27-40 1 
44-48 4 41-45 2 

·49-54 5 46-50 3 
55-59 6 51-55 4 
60-64 7 56--60 5 
65-69 8 61--66 6 
70-91 9 - -

stages of flight training. A total of 281 candidates failed some phase of flight training in this data base, and a total' 
of 839 candidates successfully completed all phases of training through advanced flight training yielding a failure 
rate of 25.1 %. 

Contingency Tables and the Raw Data 

The data from the PBI, API, and criterion variables will be placed into contingency tables for analysis. Each 
contingency table consists of n cells with all N = 1,120 candidates placed into one, and only one, of the n cells. 
Each one of these n cells is defined as the intersection of one level of a predictor variable with one level of the 
criterion variable. The raw data consist of frequency counts inserted into each of the cells. 

We will first examine each predictor variable separately for its impact on attrition. For example, consider the 
relationship between PBI and attrition. The table on the left-hand side of Fig. 1 shows the contingency table for 
the seven levels of the PBI variable and the two levels of the criterion variable. Each cell consists of the 
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Figure 1: The raw data for analyzing the relationship between each separate predictor variable and attritioIL The 
contingency table on the left shows the relationship between PBI and attrition while the contingency table on the 
right shows the relationship between API and attrition. The numbers in each cell are frequency counts. 

intersection of one of the predictor variable levels with a criterion variable level. There are thus n = 7 x 2 = 14 
cells in this first contingency table. The small number at the top of each cell indicates the cell number, while the 
larger number in each cell indicates the frequency count (the number of candidates) who fell into this particular 
intersection of categories. 
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For example, the fourth cell contains the intersection of PBI = 4 and PASS. There were 82 candidates frOm the 
total of 1,120 who fell into this intersection of categories, i.e., who scored a4 on the PBI and passed all phases of 
flight training. The sum over the seven rows of the PBI categories must equal 281 for the FAIL column and must 
equal 839 for the PASS column. 

The relationship between API scores and attrition is shown in a similar contingency table on the right-hand 
side of Fig. 1. This table differs from the one jl).st discussed only in the fact that now n == 12 because the table is 
displayed with six rows and two colUlllI)S reflecting the division of the API variable into six discrete categories. 

To address the issue of isoperror:mance, we will need to analyze the two predictor variables together with the 
criterion variable. We can conveniently display the n cells for this situation as two contingency tables with 
separate tables for PASS and FAIL. Figure 2 shows the frequency count data.for two 7 x 6 tables. These are the 
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Figure 2: T6 study the, issue of isoperror:mance, we need at least two predictor variables and their relationship with 
attrition. To display such a relationship, we use two contingency tables, one for each of the two levels of the criterion 

. variable. 

data that will be analyzed in a later section on the issue of isoperrormance. Both tables show the intersection of 
each level of the PBI variable with each level of the API variable for one of the two levels of the criterion variable. 
Here n == 84 cells. The 21st cell, for example, shows that 16 candidates who failed some phase of flight training 
fell into the cell defined by the intersection of having a PBI score of 6, and an API score of 3. 

Notice that the marginal totals running along the right-hand side of each contingency table in Fig. 2 match the 
entries in the left-hand table ,of Fig. 1. The marginal totals running along the bottom of each table match the 
corresponding entries in the right-hand table of Fig. 1. 

MODELS AND PROBABILITIES 

The frequency counts shown in the contingency ,tables of Figs. 1 and 2 are assumed to reflect an underlying 
probability attached to each of the n cells. These probabilities are labeled as Ql, Q2,' .. Qi, ., . Qn. For 
convenience, we will call this set of probabilities for the n cells the Qi. Some assigned probabilities are . 
compatible with the observed frequencies, but most probabilities that could be assigned to the Qi are incompatible 
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with the raw data. We would like to detennine which of these assignments can be rejected by the data and which 
are supported by the data. Any proposed assignment of probabilities to the Qi will be called a rrwdel. 

In the companion paper (2), a fonnula was derived from the perspective of Bayesian model evaluation The 
number computed by this fonnula is compared to a X2 distribution with an appropriate number of degrees of 
freedom. If the number falls into the upper 5% region of the X2 distribution, the proposed model is rejected; 
conversely, if the number falls into the lower 95% region of the distribution, the assigned probabilities are accepted 
as being compatible with the data. 

We will now illustrate this fonnula for the data shown in the two contingency tables of Fig. I. This exercise is 
in preparation for the more significant analysis of isoperformance data in Fig. 2. Equation (9) from Reference [2] 
is rewritten here as Equation (1): 

2Ntfiln (~iJ ~ X2 (v df) (1) 

where N is the total number of candidates in the contingency tables. In this particular analysis N = 1,120. fi 
stands for the relative frequency in the ith cell so that fi = Nd N where Ni is the actual frequency count in the 
ith cell. Qi is the probability assigned to the ith cell by any given model. 

Let us first use Equation (1) to assess the impact of PBI scores on attrition. We will initially suggest two 
simple models for the Qi, but both of these models will be rejected. Then we will fmd a third model that will be 
accepted. These models are labeled respectively as models M A , MB and Me. 

Simple explanations should always be checked before more complicated models are proposed. With that in 
mind, MA is a model that says that all 14 Qi for the 14 cells of the PBI contingency table are equal. In other 
words, the assigned probability for failing is equal to the probability for passing, and, furthennore, there is no 
relationship between PBI scores and attrition. Under this model each Qi = .0714. 

Equation (I) returns a value of 577.32 for this model. We compare this to a X2 distribution with v = 13 df. 
The degrees of freedom are calculated by considering n and subtracting the number of constraints on the Qi. Since 
there is only one constraint on the Qi, namely, that they must sum to 1, v = n - 1 = 13. A value of 22.36 marks 
the dividing point between the upper 5% region and the lower 95% region of the X2 distribution with 13 df. A 
value of 577.32 obviously falls into the upper 5% region of this X2 distribution Therefore, this model is rejected 
and we must search for another model that the data can support. 

Model MB takes notice of the prior existing knowledge that about 25% of all candidates fail one of the later 
stages of flight training after API. The seven Qi that together make up the probability of failure will sum to .25 
and the remaining seven Q i that together make up the probability of passing will sum to .75. However, we still 
retain the hypothesis that PBI scores have no impact on attrition. To mirror this hypothesis, the probabilities are 
made equal within the PASS and FAlL levels of the criterion variable. This is a slightly more complicated model 
than considered in model MA. We are inserting information only about the relative probabilities of passing and 
failing and nothing else. See Table 2 for a detailed list of the Qi values for model MB. The sum under the two 
Cell Probability columns is rounded up to two decimal places. 

Equation (1) returns a value of 286.49 for MB. Since one extra constraint has been introduced, the appropriate 
degrees offreedom for the X2 distribution is now v = n - 2 = 12. A value of 21.03 marks the dividing point 
between the upper 5% region and the lower 95% region of the X2 distribution with 12 df. Because a value of 
286.49, while a marked improvement over Model MA, still falls into the upper 5% region of the X2 distribution, 
MB must also be rejected. 

Because the simple explanations of Models MA and MB have been clearly rejected, we are now allowed to 
hypothesize some minimal structure to our next class of models. We will test whether there is a relationship 
between PBI scores and attrition in the following model for the Qi. The following model is just one example from 
the class of models that the data support. 
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Table 2: Specification of the Fourteen Qi Values for Model MB. 

Row Qi Fail Cell Probability Qi Pass Cell Probability 

1 Ql .0357 Q2 .1071 
2 Q3 .0357 Q4 .1071 
3 Qs .0357 Q6 .1071· 
4 07 .0357 Q8 .1071 
5 09 .0357 QIO .1071 
6 Q11 .0357 Q12 .1071 
7 Q13 .0357 Q14 .1071 

.2500 .7500 

We will hypothesize that PBI scores are related to the probability of failure. We expect that low PBI scores are 
associated with an elevated probability of failure while high PBI scores indicate an increased chance of success. 
Furthennore, we postulate that there should be some reasonably smooth function that rela,tes probability of failure 
and the PBI scores. That is, the probability of failure should decrease for each unit increase in the PBI score. We 
retain the desirable feature from Model MB that the Qi that make up the probability of failure, ~spective of 
anything else, should add up to .25. 

As an example of constructing such a model, refer to Table 3. The last column shows the desired 
characteristics for the probability for failure, that is, that it be a monotonic, decreasing function of PBI. These 
values in the last column are calculated from Bayes's Formula. 

Table 3: Model Me Which Hypothesizes Some Structure to the Qi Such That the Probability for Failure is a 
Decreasing Monotonic Function of PBI Scores. 

PBI Qi Fail Cell Probability Qi Pass Cell Probability· Probability Fail 

3 01 .01 Q2 .01 .50 
4- 03 .04 Q4 .08 .33 
5 05 .05 Q6 .13 .28 
6 07 .06 Q8 .16 .27 
7 Q9 .05 QIO .15 .25 
8 011 .03 Q12 .11 .21 
9 013 .01 Q14 .11 .08 

Total .25 .75 

The following calculati~n shows how Bayes's Formula is 1JSed to find the probability of failure given that a 
candidate had a PBI score of 3. 

P(Fail and PBI = 3) 
P{FaiIIPBI = 3) = P{Fail and PBI = 3) + P{Pass and PBI = 3) 

Ql 
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.01 

.01 +.01 

.50 

--~---~----

The value returned by Equation (1) for Model Me is 15.73. We added another constraint on the Qi in order to 
arrive at Me, so the critical value demarcating the upper and lower regions of the X2 distribution for 11 df is 
19.68. 15.73 falls into the lower 95% region where Model Me can be accepted. 

To lend some sense of the variation in the probability of failure inherent in the class of good models, look at 
Table 4. The probabilities assigned to the Qi shown in the table above represent another good model, call it Model 
MD. The value from Equation (1) for this model is 16.44 and thus it also falls into the acceptable region of the. 
X2 distribution Instead of the marked functional relationship between lower PBI scores and higher probability for 
failure evident in model Me, no extra information is contained in these PBI scores. The probability for failure 
does not change with changing PBI score and could have been predicted solely from the historical knowledge of 
the probability of failure. 

Table 4: Another Acceptable Model, call it Model MD, Which Shows a Different, Much Less Dramatic Function 
of Probability for Failure Given PBI Scores. 

PBI Qi Fail Cell Probability Qi Pass Cell Probability Probability Fail 

3 Ql .0043 Q2 .0130 .25 
4 Q3 .0250 Q4 .0740 .25 
5 Qs .0450 Q6 .1330 .25 
6 Q7 .0540 Q8 .1580 .25 
7 Qg .0470 QlO .1410 .25 
8 Ql1 .0390 Q12 .1160 .25 
9 Q13 .0357 Q14 .1150 .24 

.2500 .7500 

We could find, in similar fashion, a large nwnber of acceptable models. Some of these would show an 
interesting functional relationship between probability of failure and PBI scores just like Model Me, and some 
would show more of the flat-line relationship exhibited in Model MD. The point is that there is some uncertainty 
about the exact form of the functional relationship between probability of failure and PBI score. To express this 
uncertainty, we should attach some error bars to the point estimates of the probability of failure at each discrete 
PBI score. More generally, we think of a confidence band attached to the curve expressing the functional 
relationship between probability of failure and PBI scores. The confidence band will be larger at either end of the 
PBI range and smaller in the middle because the frequency counts are larger in the middle and smaller at the ends. 

Figure 3 provides a rough, qualitative sense of what these error bars would look like for the PBI scores. The 
circles indicate a good point estimate for the probability of failure at each PBI score by being placed at the actual 
relative frequency as given by the data. The width of the error bars represent the extremes of the acceptable models. 

A more precise analysis would find the average of all the acceptable models and, at the same time, calculate 
the standard deviation around the average. This kind of analysis would provide the best functional curve and its 
associated confidence band. Such calculations are the concern of Bayesian Model Averaging (3), but 
concentrating on this topic would take us too far afield for the present investigation. We are content, at this point, 
merely to locate some good models at the extremes of acceptability to obtain some general sense of the uncertainty 
of the functional relationship. 
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Figure 3: A curve relating PBI scores to probability of failure. The error bars attached to each point estimate give 
some idea of the range of acceptable models for the given data. 

Another good model, ME, which is intermediate between Models Me and MD, is shown in Table 5. There 
. is a functional rel~tionship between probability for failure and PBI score, but it is not as strong as Me. However, 
it is not quite the flat-line relationship of MD either. The X2 value for ME is 6.39, which falls into acceptance 
region for 11 df. . . 

Table 5: Another Acceptable Model, ME, Which Shows an Intermediate Relationship between Probability for 
Failure and PBI Scores. 

PBI Qi Fail Cell Probability Qi Pass Cell Probability Probability Fail 

3 Ql .008 Q2 .015 .35 
4 Q3 .035 Q4 .080 .30 
5 Qs .050 Qa .135 .27 
6 Q7 .057 Qs .160 .26 
7 Q9 .045 QlO , .135 .25 
8 Qll .040 Q12 .125 .24 
9 Q13 .015 Q14 .100 .13 

Total .250 .750 

Figure 4 shows three curves dictated by the models Me, MD, and ME. This gives an example of the 
variation in functional relationships to be expected from the class of good models. 

The same kind of analysis just described for the PBI scores as a single predictor variable can be perfonned on 
the API scores. Model MF where all 12 Qi are equal to .08333, meaning that the probability for failure is equal 
to 50% for all API scores, is rejected with a value of 748.90. The critical value for the X2 distribution that reflects 
only this universal constraint is 19.68. Because this contingency table has only n = 12 cells, II = n - 1 = 11 df. 
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Figure 4: Three representative curves showing functional relationship between probability for failure and PBI scores. 

Model MG, where the six fail Qi are each equal to .041667 and the six pass Qi are each equal to .125 so that 
overall probability for failure equals .25 and probability for passing is equal to .75, is also rejected with a value of 
458.01. The degrees of freedom drop to 10 because of the extra constraint on the Qi and the critical X2 value is 
18.31. 

We search fOJ:" another model that can be accepted by Equation (1). Model MH, as outlined in Table 6, is one 
such acceptable model. This model has a value of 9.84 and clearly fits into the lower 95% region ofax2 

distribution with 9 df where the critical value is 16.92. Here we see that there is a stronger functional relationship 
between API scores and probability for failure than existed for PBI scores. 

Table 6: Model MH Hypothesizes a Certain Structure to the Qi Such That the Assigned Probability for Failure is 
a Decreasing Function of API Scores. 

API Qi Fail Cell Probability Qi Pass Cell Probability Probability Fail 

1 Ql .052 Q2 .035 .60 
2 Q3 .059 Q4 .090 .40 
3 Qs .062 Q6 .200 .24 
4 Q7 .058 Qs .250 .19 
5 Q9 .016 QlO .145 .10 
6 Qll .003 Q12 .030 .09 

Total .250 .750 

Just as for PBI scores, there are many models for assigning probability values to the Qi that are acceptable. 
Table 7 presents another acceptable model, Model MI. This model shows a less pronounced influence of API 
scores on probability of failure. As before, we now present a model in Table 8, M J, that is intermediate between 
Mil and MI. It has a X2 value of 8.89 for 9 df. 
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Table 7: Model MI Shows a Much Less Pronounced Impact of API Scores on Probability for Failure Than Model 
MH. 

API Qi Fail Cell Probability QiPass Cell Probability Probability Fail 

1 Q1 .041 Q2 .044 .48 
2 Q3 .050 Q4 .120 .29 
3 Q5 .064 Q6 .200 .24 
4 Q7 .066 Qs .240 .22 
5 Q9 .024 Q10 .120 .17 
6 Qu .005 Q12 :026 .16 

Total .250 .750 

Table 8: Model MJ Shows an Intermediate Impact of API Scores on Probability for Failure As Compared to 
Models MH and MI. 

API Qi Fail Cell Probability Qi Pass Cell Probability Probability Fail 

1 Q1 .045 Q2 .040 .53 
2 Q3 .054 Q4 .100 .35 
3 Q5 .063 Q6 .204 .24 
4 Q7 .062 Qs .237 .21 
5 Q9 .020 Q10 .128 .14 
6 Qu .006 Q12 .041 .13 

Total .250 .750 

Figure 5 is similar to Fig. 3 in that it shows error bars attached to each point estimate of the assigned 
probability for failure at each of the six API scores. These error bars are just rough indications of where some 
extreme, but still acceptable, models could be located. Models MH, Mj, and MJ are all examples of acceptable 
models that lend a sense of the uncertainty in the functional relationship between API scores and the probability 

'. for failure. Figure 6 plots the three curves represented by Models MH,MI, and MJ. 

ISOPERFORMANCE ISSUES 

Having become somewhat familiar with the techniques surrounding a single predictor variable and one criterion 
variable, we can now transition to the case of two predictor variables and one criterion variable. This is the 
simplest case where we can talk about isoperformance and is the main focus of the current investigation 

When we employ the cOI?-cept of isoperformance, we seek that combination of two or more predictor variables 
that result in the same probability for failure. In the particular application treated here, we are interested in trading 
off good scores on one class of variables with bad scores on another class of variables such that overall 
performance (assigned probability for failure) remains the same. For example, can good scores on API compensate 
for low scores on the PBI, or vice versa? 

Fortunately, there is nothing new demanded from a theoretical point of view to address this issue. Bayesian 
model evaluation remains the fTanlework within which the quantitative analysis is carried out. Equation (1) is still 
applicable, and we continue to exploit the idea of assigning probabilities to the n cells of the contingency tables. 
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Figure 5: Error bars attached to the point estimates of the functional relationship between API scores and probability 
for failure. 

1.00 

.90 

.80 

.70 

.60 

.50 

.40 

.30 

.20 

.10 

Probability 
of 
Failure 

<> Model H 
o Model I 
o Model J 

O~----~------r-----~-----r----~----~ 
2 3 4 5 6 

API Scores 

Figure 6: Three curves illustrating the range of functional relationships captured by some acceptable models. 
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Granted, the n cells of the contingency tables become more numerous with each addition of a new predictor 
variable. Compare the tables of Fig. I where n = 14 or 12 with the isoperformance table of Fig. 2 where n = 84. 

One additional difference is that we now have two pieces of data, the scores from both the PBI and the API, as 
given information in Bayes's Formula. Suppose that we have as specific pieces of information a score of 5 on the 
PBI and a score of 3 on the API. Bayes's Formula yields 

P(FailIPBI = 5 and API = 3) = P(Fail and PBI = 5 and API = 3) (2) 
. P(Fail and PBI = 5 and API = 3) + P(Pass and PBI = 5 and API = 3) 

Refer back to Fig. 2 to fmd the Oi values to plug into this equation: 

P(FailIPBI = 5 and API = 3) = 015 
015 +057 

(3) 

If 015 were assigned the value of .01 and Q57 the value of .03, then the probability for failing conditioned on this 
information would equal .25. 

The goal is still to fmd good models that represent an acceptable fit to the observed frequency data and to 
reject other models because of the large discrepancy when matched with the data. The measure ·of such a 
discrepancy is provided by Equation (1) when the value it returns is placed into a region of high or low probability 
ofax2 distributioll The class of good models should be explored to provide some sense of the uncertainty to be 
attached to the hypothesized functional relationship between the probability for failure and the two predictor 
variables of interest. 

We begin by showing, just as we did in the one predictor case, that certain simple benchmark models that posit 
no relationship between the predictor variables and the criterion variable can be rejected. Next, we present some 
examples of models that do fit the data, but which also represent minimum insertion of extra structure to explain 
the proposed relationship. This is done with explicit recognition of the precepts of Occam's ~or. 

Start with a model, MK, that includes the two predictor variables and, which by analogy to ModelS MA and 
MG, says that alI the Qi are equal. This implies that probability for failing conditioned on the two predictor 
variables is always equal to .50. This model is clearly rejected, as is the next model, ML, analogous to ModelS 
MB and MH. These models assigned equal Qi to alI fail cells and equal Qi to alI pass cells, but set the overall 
probability for failing at .25 and the overall probability for passing at .75. These models imply that the probability 
for failing, given any PBI and API score, remains constant at .25 and that, therefore these two predictor variables 
provide no useful information beyond what is already known from the historical data. 

The first acceptable model is Model MM shown in Table 9. The entries in this table are the probability for 
failing given the PBI score as indexed by the row and the API score as indexed by the column. All these values 
were calculated according to Bayes's Formula as illustrated above in Equations (2) and (3). 

This model was found by assigning Qi values close to the observed frequencies. The combination of low PBI 
and API scores seems to raise the probability for failing (or lower the probability for passing). Intermediate scores 
hover around the .25 level. A combination of high scores on both variables offers some evidence that probability 
for passing is increased (or tl,le probability for failing is lowered). The important thing here is that, contraIy to 
models MK and ML, there appears to be some sort of functional relationship between the information in the 
predictor variables and the probability assigned for failing. 

Just as before with the one predictor case, there are many acceptable models for the two predictor case that 
exhibit a good fit of the assigned Qi to the observed frequencies. Model MM, however, has the defect of not 
providing a smooth declining relationship between the discrete levels of the PBI and API scores and probability for 
failing. 

For example, within the API = ,1 level the probability for failing starts out at .74, decreases to .64, then jumps 
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Table 9: One Acceptable Model, MM, for the Two Predictor Variables Used in the Analysis of Isoperfonnance. 

API 

PBI 1 2 3 4 5 6 

3 .74 .53 .31 .23 .23 .33 

4 .64 .50 .24 .16 .20 .25 

5 .71 .22 .25 .27 .14 .17 

6 .53 .31 .24 .28 .13 .26 
7 .53 .29 .20 .22 .15 .16 
8 .43 .39 .27 .19 .07 .19 
9 .38 .33 .15 .12 .05 .13 

x2 = 19.64, df = 81, critical value=102.65 

. back up to .71, then back down again to .53. Within the PBI = 4 level the probability for failing declines steadily 
through API categories 1-4, but then starts to increase for categories 5 and 6. 

Table 10 presents another acceptable model, MN, which exhibits a somewhat better behavior in this regard. 
The probability for failing shows a smoother functional relationship than Model MM. This is bought at the price 
of a larger X2 value, in other words, the assigned Qi had to deviate from the observed frequencies a little bit more 
than Model M M to provide this kind of relationship. 

Table 10: Another Acceptable Model, MN, for the Two Predictor Variables Which Exhibits a Smoother Functional 
Relationship between Increasing Scores and Declining Probability for Failing. 

API 

PBI 1 2 3 4 5 6 

3 .90 .53 .44 .30 .29 .29 
4 .75 .50 .25 .16 .14 .13 
5 .71 .30 .25 .27 .14 .11 
6 .53 .29 .24 .28 .13 .11 
7 .53 .28 .20 .22 .15 .16 
8 .43 .28 .20 .19 .07 .08 
9 .38 .29 .15 .12 .05 .07 

X2 = 39.32, df = 81, critical value=102.65 

This second acceptable model provides the first glimpse of the variability associated with the functional 
relationship between the two predictor variables and probability for failing. We are already aware from our 
analysis of the single predictor variable that the class of good models provides a range of values at each 
probability. The isoperformance issues involved with two predictor variables must cope with the same problem. In 
fact, the variability is worse with two predictor variables because the frequencies at each intersection of the 
contingency table are smaller than the one predictor case. 

As a third acceptable model to shed some light on the variability problem, consider Model Mo in Table 11. 
As an example, concentrate on the entry in the first row and first column from Tables 10 and 11. We see that 
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Table 11: Another Acceptable Model, Mo, for the Two Predictor Variables, Which Together with Models MM 
and MN Give Some Idea of the Variability to be Expected in the Functional Relationship. 

API 

PBI 1 2 3 4 5 6 

3 .69 .47 .41 .24 .29 .29 
4 .57 .50 .25 .16 .25 .27 
5 .50 .30 .26 .27 .17 .30 
6 .50 .29 .24 .28 .15 .20 
7 .50 .28 .20 .22 .15 .27 
8 .47 .33 .24 .19 .11 .18 
9 .44 .29 .15 .13 .13 .29 

x2 = 40.35, df = 81, critical value=102.65 

P(FaiIIPBI = 3 and API = 1) can range at least from a high value near .90 to a low value near .69. Likewise, in 
the last row and last column, P(FaiIIPBI = 9 and API = 6) can range at least from .29 to .07. 

A fourth and final model, Mp, is presented in Table 12 because it affords the opportunity to make some 
interesting remarks about isoperfonnance. Model M p was constructed such that as many entries as possible were 

Table 12: A Fourth Model, M p , Where the Concept of Isoperformance Can Be Easily Illustrated. 

API 

PBI 1 2 3 4 5 6 

3 .71 .33 .25 .25 .25 .25 
4 .64 .25 .25 .25 .25 .25 
5 .64 .25 .25 .25 .25 .17 
6 .53 .25 .25 .25 .25 .17 
7 .52 .25 .25 .25 .15 .15 
8 .38 .25 .25 .18 .14 .12 
9 .27 .25 .15 .12 .10 .09 

x2 = 106.76, df = 81, critical value=102.65 . 

equal to .25. This model is just on the wrong side of acceptability with a x2 value of 106.76 as compared to the 
critical value of 102.65 for 81 df. Nonetheless, with minor tweaking of the .25 values, it could have been made 
acceptable, but keeping the .25 values simplifies matters and illustrates the point so nicely that we retain Model 
Mp. 

All those entries in Table 12 with a value of .25 represent occasions where flight students can trade off a score 
on the first predictor variable with a score on the second predictor variable, yet still achieve the same level of 
performance. For example, a low PBI score of 3 if combined with an API score of 3, 4, 5, or 6 will still result in 
an assigned probability for failing of .25. A low API score of 2 can be offset by any PBI score greater than 3. An 
API score of 3 and a PBI score of 7, or an API score of 4 and a PBI score of 6 represent intermediate scores that 
can be traded off quite freely for the same probability for failing. 
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SUMMARY 

Ascertaining the probability for success of a student over all phases of flight training is a prerequisite for 
optimizing decisions relevant to naval aviation selection and training. We have presented here a quantitative 
technique for assigning probability for success based on observed frequency counts. The technique is solidly based 
on an approach derived from Bayesian model evaluation and has been shown to connect with information theoretic 
concepts and the X2 distribution. 

Specifically, one would like to know what happens to the probability of success as a function of information 
about scores on selection test batteries, personality tests, vision exams, psychomotor skills, race, gender, college 
major, and so on. The essential question boils down to: Does this information change the probability for 
success from what was known without these scores? 

As a natural outgrowth to the solution of this problem, we are able to address issues in isoperforrnance. That 
is, we are interested in the question of whether a subject can trade off low scores on one set of skills like cognitive. 
information processing with high scores on another set of skills like motivation to become a pilot. Based on the 
analysis here, cognitive information processing variables like the API scores and a personality test surrogate like 
the PBI scores both significantly alter the probability for success from its base line value of 75%. These results 
were examples of the simplest application to a single predictor variable. 

The next issue is the consideration of the joint effect of both API scores and PBI scores. Here again, there 
were significant changes in the probability for success as a function of knowledge about two predictor variables. 
Obtaining the lowest scores on both the API and PBI materially lowered the probability of success, while high 
scores on both these variables raised the probability of success from its base line value. 

Critical to the isoperforrnance question, we could also determine which combination of scores resulted in a 
trade off where the probability of success remained essentially the same. For example, a relatively low API score 
of 2 could be traded off for any PBI score of say 6 or higher in order to remain at a 75% probability of success. 

An important adjunct to this kind of analysis is a determination of the variability involved in making a point 
estimate for the probability of success as a function of the predictor variables. This was accomplished in an 
illustrative manner by sampling from the class of all good models. Such samples lend a rough idea of the 
variability that must be attached to anyone functional relationship that might be presented as an explanation for 
the probability of success. A more rigorous analysis would have sampled more extensively from the class of good 
models and then formed an average of the predictions from each of these good models as weighted by the posterior 
probability of each model. Such an analysis is planned for the future with an even larger data set. 

One feature that a frequency count clearly reveals is that the sample size fluctuates markedly over the various 
discrete levels of the predictor variables. There are fewer counts at the extreme ends of the predictor variables and 
many more at the middle levels. The situation becomes progressively worse when tables for two or more predictor 
variables in combination with a criterion variable are assembled. There may only be a few students or even no 
students at the intersection of low probability cells. This is quite understandable if we think that the predictor 
variable scores are roughly normally distributed. We are then asking for the combination of scores falling, for 
example, into the lower 2% of the distribution of the first variable with the highest 2% of the second variable. 
This naturally means that the estimation at this combination of extreme scores will have a much higher attached 
variability. 

For example, there would be very few cases in any data base for API scores of I and PBI scores of 9. In fact, 
there were no cases in the data base analyzed in this report with this combination of scores together with the 
criterion measure of failing some phase of flight training. The consequence of this fact is that the attached 
variability will be much higher for point estimates of the probability of success given these scores as compared to 
equivalent estimates of probability of success for scores like API = 4 and PBI = 6 where many cases exist. This is 
unfortunate for isoperformance because it is exactly at these extreme combination of scores where most interest lies. 
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